ACE2 receptor expression by SARS-CoV-2 across different animal species

ACE2 receptor expression by SARS-CoV-2 across different animal species

By Dr. Liji Thomas, MD Apr 20 2020 A new report published on the preprint server bioRxiv in April 2020 reports that several species of animals can be infected with relative ease by the SARS-CoV-2 virus that is the causative agent of the currently raging COVID-19 pandemic. This casts much light on the possible natural hosts and routes of transmission of this virus. The novel coronavirus 2019 has caused widespread infection across the whole world, beginning from China. It has now caused over 2.47 million cases and 170,000 deaths, as of April 20, 2020. The resulting control measures, as well as the healthcare preoccupation with the pandemic, has caused an alarming economic downturn, as well. Novel Coronavirus SARS-CoV-2 Colorized scanning electron micrograph of an apoptotic cell (blue) infected with SARS-COV-2 virus particles (red), isolated from a patient sample. Image captured at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: NIAID Where did the virus come from? The virus, called the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is still a mystery in many ways. Nobody is sure where it suddenly came from. Some of the early patients had links with the Huanan seafood and wild animal market in Wuhan city, China, which led to the theory that the virus was one which was native to wild animals but jumped the species barrier by acquiring characteristics that allowed it to infect and replicate in humans successfully. Sequencing studies show that the viral genome is closely related to that of the SARS-CoV (infecting humans), and various bat coronaviruses . The closest identity is with the bat virus CoV RaTG13, at over 96%, which indicates that the current virus probably came from bats. In fact, bats have been the natural reservoir for a great many emerging viruses that spread from animal hosts to man, including the earlier human coronaviruses that caused SARS and MERS in 2002 and 2012, respectively. The challenge is to find out through which intermediate hosts the bat virus ultimately spread to the human host, as it is unlikely to have occurred in a single step, seeing the species occupy widely separated environments. At least one other species must have served to allow the original virus to acquire some key mutations that improve the efficiency of zoonotic transmission to the human host, either as an intermediate or as an amplifying host. Pangolins were thought to be the intermediate hosts; however, the degree of overlap between the pangolin coronaviruses and the human SARS-CoV-2 is less than 93%, suggesting the former is not the direct progenitor of the human virus. Why is the ACE2 molecule important? For a virus to infect a host, it must be able to recognize and bind to a suitable receptor molecule on the host cell. The presence of such a receptor is also key to which cell the virus tends to infect, the tissues to which it is attracted, and the disease process. For the SARS-CoV-2 virus, the S protein is the chief attachment protein that binds to the receptor on the host cell membrane. This is split into two subunits, S1 and S2, at the furin cleavage site called RRAR. The S1 subunit binds to the receptor during the process of cell entry and sets off the series of events that cause the S2 receptor to trigger cell membrane-virus fusion. The protein carries a receptor-binding domain (RBD) within itself. This cleavage is not essential for the virus to fuse to the host cell membrane but is mainly for enhanced viral efficiency. In coronaviruses affecting other species, it increases the pathogenicity, enhances the fusion and makes the virus fitter. This furin cleavage site is absent in the SARS virus and other animal coronaviruses. The human cellular receptor for both the SARS and the SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 in other species like the Chinese horseshoe bat and civet also fulfill this function. How was the study done? The current study aimed to investigate the receptor activity of ACE2 in 14 species of mammals. These were chosen as being either potential natural hosts for the SARS-CoV-2, intermediate hosts for the SARS-CoV, commonly used laboratory animals, or domestic pet animals. The investigators used a pseudotyped HIV virus, expressing human ACE2 receptors. This virus was introduced to cell cultures transfected with empty vector or plasmids, which expressed one of four receptors: the human ACE2, ACE1, DDP4 for the MERS virus, or APN for another coronavirus. Membrane fusion results in syncytia formation. This was also tested in an assay, which looked for the extent of membrane fusion resulting from the binding of the S protein to the human ACE2 receptor. What did the results show? The study showed that there were many animal ACE2 enzymes that were potential receptors for both SARS-CoV-2 and its mutant. The highest receptor activity was in the human and rhesus monkey ACE2 enzyme, and the lowest in the rat and mouse enzyme. The other ten had intermediate activity. Four of the ten (canine, feline, pangolin, and rabbit) had virus bound to more than half of the receptors. Rhesus Monkeys. Image Credit: Jeannette Katzir / Shutterstock Related Stories



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More