Hybrid microscope could bring cancer diagnosis into the digital era

Hybrid microscope could bring cancer diagnosis into the digital era

By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era. Pairing infrared measurements with high-resolution optical images and machine learning algorithms, the researchers created digital biopsies that closely correlated with traditional pathology techniques and also outperformed state-of-the-art infrared microscopes. Led by Rohit Bhargava, a professor of bioengineering and the director of the Cancer Center at Illinois, the group published its results in the Proceedings of the National Academy of Sciences . The advantage is that no stains are required, and both the organization of cells and their chemistry can be measured. Measuring the chemistry of tumor cells and their microenvironment can lead to better cancer diagnoses and better understanding of the disease." Rohit Bhargava, professor of bioengineering and the director of the Cancer Center at Illinois The gold standard of tissue pathology is to add dyes or stains so that pathologists can see the shapes and patterns of the cells under a microscope. However, it can be difficult to distinguish cancer from healthy tissue or to pinpoint the boundaries of a tumor, and in many cases diagnosis is subjective. "For more than a century, we have relied on adding dyes to human tissue biopsies to diagnose tumors. However, the shape and color induced by the dye provide very limited information about the underlying molecular changes that drive cancer," Bhargava said. Technologies like infrared microscopy can measure the molecular composition of tissue, providing quantitative measures that can distinguish cell types. Unfortunately, infrared microscopes are expensive and the samples require special preparation and handling, making them impractical for the vast majority of clinical and research settings. Bhargava's group developed its hybrid microscope by adding an infrared laser and a specialized microscope lens, called an interference objective, to an optical camera. The infrared-optical hybrid measures both infrared data and a high-resolution optical image with a light microscope - the kind ubiquitous in clinics and labs. "We built the hybrid microscope from off-the-shelf components. This is important because it allows others to easily build their own microscope or upgrade an existing microscope," said Martin Schnell, a postdoctoral fellow in Bhargava's group and first author of the paper. Related Stories



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More