Inducing totipotency into stem cells opens new doors for potential cell replacement therapies

Inducing totipotency into stem cells opens new doors for potential cell replacement therapies

Snake stem cells create real venom to use as medicine Scientists at the National University of Singapore's Yong Loo Lin School of Medicine have now found a way to manipulate pluripotent cells into acquiring the totipotent capacity previously thought to exist only in the zygote. This not only provides key insights into how totipotency is formed and the earliest events in mammalian development, but opens new doors for potential cell therapies that were previously unexplored. The study identified a totipotency-inducing factor - Negative Elongation Factor A (NELFA), which is capable of driving pluripotent embryonic stem cells into totipotency in a petri dish. NELFA achieves this feat by causing specific changes in the gene regulatory and metabolic networks of the cell. Specifically, NELFA has the ability to reactivate certain genes that are only active in the zygote but otherwise silent in embryonic stem cells. NELFA is also able to alter the energy using pathways in the pluripotent stem cells. All these changes will result in pluripotent stem cells reverting into a totipotent-like state. Discovering this method of inducing totipotency in cells outside of the embryo also provides a means to engineer cells with maximum cell plasticity for therapeutic purposes. This increases the potential applications of regenerative medicine, especially in cell replacement therapies. According to Assistant Professor Tee Wee Wei, the lead investigator in this study, the eventual goal of this research is to translate the findings into the development of rapid and efficient cellular reprogramming strategies for clinical application, such as in the treatment of debilitating diseases and developmental disorders. Source: National University of Singapore, Yong Loo Lin School of Medicine Journal reference: Hu, Z., et al. (2020) Maternal factor NELFA drives a 2C-like state in mouse embryonic stem cells. Nature Cell Biology . doi.org/10.1038/s41556-019-0453-8 .



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More