In a first-time disclosure of IPN60090, a small-molecule inhibitor of the metabolic enzyme glutaminase (GLS1), researchers from The University of Texas MD Anderson Cancer Center's Therapeutics Discovery division and Ipsen Biopharmaceuticals reported the preclinical discovery and early-stage clinical development of this novel drug. IPN60090, now under investigation in a Phase I trial, may hold benefit for certain patients with lung and ovarian cancers.
MD Anderson's GLS1 program was initiated and advanced by a team of scientists in the Institute for Applied Cancer Science (IACS) and Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION) platforms, both engines within Therapeutics Discovery. Development of the program continues in collaboration with Ipsen, which licensed the therapeutic in 2018.
Findings and information about the ongoing trial will be presented today at the 2020 American Association for Cancer Research Virtual Annual Meeting I by Jeffrey Kovacs, Ph.D., institute group leader with TRACTION and co-leader of the GLS1 program.
This effort is a great example of our strategy within Therapeutics Discovery, taking a comprehensive approach to personalized medicine. Our preclinical data suggest that IPN60090 may be effective in underserved groups of patients who need better treatment options, and we look forward to results from our ongoing clinical trials." Jeffrey Kovacs, Ph.D., Group Leader with TRACTION and Co-Leader of the GLS1 Program
Dysregulation of cellular metabolism is a hallmark of cancer development, and the GLS1 enzyme plays a key role in many metabolic processes. Thus, it makes an attractive target for cancer therapy, explained Kovacs.
IACS drug-discovery scientists identified IPN60090 as a potent and selective inhibitor of GLS1 suitable for clinical trials, and translational researchers in TRACTION demonstrated its activity against subsets of lung and ovarian cancer preclinical models. Related Stories