Journal of Experimental Biology current issue

We hypothesized that daily food availability times served as an ‘epigenetic’ factor and affected the reproductive physiology in continuously reproducing species. This we tested by measurement of mRNA expression of genes coding for the enzymes involved in DNA methylation-demethylation ( dnmts , tets ) and histone modification ( hat1 , hdacs ) in the hypothalamus, liver and gonads of male and female zebra finches that were paired held for a year under 12L:12D with access to the time-restricted food availability (TrF: 4-h in morning, TrF-M, or evening, TrF-E) with controls on food ad libitum (FAL). The overall hypothalamic and hepatic expression patterns of hat1 and hdac (s) were similar but those of dnmt (s) and tet (s) were different between males and females. Irrespective of TrF timings, both hat1 and hdac (s) mRNA levels were increased in the hypothalamus, but not in liver in which hat1 mRNA levels were increased in the TrF-M group. While hypothalamic tet (s) were higher in TrF-E males, the hepatic tet (s) were higher in TrF-M birds ( tet1 , only males). Gonadal expressions were further varied and showed sex differences. Histone modifying genes did not show TrF-effects, except the elevated testicular hdac3 levels. Similarly, testicular dnmt3b and tet2 mRNA levels were increased and decreased in TrF-M and TrF-E, respectively, whereas ovarian dnmt1 and tet2 levels were reduced in TrF-M and tet1 in the TrF-E. Present results suggest that an enforced daily feeding schedule in long term could serve as a conditioning environment that shapes at epigenetic levels, the overall hypothalamic regulation, liver and gonadal functions in diurnal vertebrates. Received October 27, 2019.



Also in Industry News

CDC Coronavirus Testing Decision Likely to Haunt US for Months to Come
CDC Coronavirus Testing Decision Likely to Haunt US for Months to Come

0 Comments

CDC Coronavirus Testing Decision Likely to Haunt US for Months to Come

Read More

Cannabidiol helps fight antibiotic-resistant bacteria
Cannabidiol helps fight antibiotic-resistant bacteria

0 Comments

Cannabidiol helps fight antibiotic-resistant bacteria

Read More

Changes in surface sugarlike molecules help cancer cells to spread
Changes in surface sugarlike molecules help cancer cells to spread

0 Comments

Changes in surface sugarlike molecules help cancer cells to spread

Read More