Lab mice may have differences in small-intestine microbiome as compared to humans

Lab mice may have differences in small-intestine microbiome as compared to humans

Gut microbiome linked to behavioral problems in children As might be expected, mice that consumed poop had much higher microbial loads (around 100 times higher), of large-intestine (and fecal) microbiota, and different profiles of bile acids in their small intestines, compared with the diapered mice. Their intestines were similar, however, to those of humans with microbial overgrowth disorders, such as small intestinal bacterial overgrowth (SIBO), which can cause diarrhea and weight loss. In contrast, the conditions inside the small intestines of the mice that did not eat their own feces more closely resembled the conditions inside the small intestine of a healthy human. Bogatyrev calls the process of bringing fecal bacteria into the small intestine through coprophagy "self-reinoculation." By consuming their own poop, the mice reintroduce bacteria from the large intestine into the small intestine, and change the conditions and microbial communities in the upper gut. Bogatyrev and his colleagues did not attempt to determine how self-reinoculation might generally affect research involving mice, but they suspect that there could be wide-ranging implications to numerous research areas if the digestive systems of the mouse models do not behave like those of humans. One area could be dietary research. If you have more microbes in the small intestine, that, in turn affects the bile-acid composition there and the nutrients in the diet may be absorbed differently. Fats, for example. Another area could involve probiotics and the microbial ecology of the gut. Self-reinoculation can cause inconsistent results in controlled-administration protocols because you don't know how the probiotics are being reintroduced to the gut by the animals themselves." Said Bogatyrev, Caltech postdoctoral scholar in chemical engineering and lead author of the study And another big area where coprophagy would matter could be drug research, Bogatyrev adds. Researchers use rodents in preclinical models, and the drugs administered are often absorbed in the small intestine, where they can potentially be affected by small-intestine microbiota. "Although there's a recognition that self-reinoculation with fecal flora and metabolites may be an issue and it may affect some study outcomes, we just don't know yet how important it is. This work suggests that the effects of self-reinoculation need to be rigorously tested, which provides a plethora of opportunities for future research," Bogatyrev says. Source: California Institute of Technology Journal reference: Bogatyrev, S.R., et al. (2020) Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome. doi.org/10.1186/s40168-020-0785-4 .



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More