Research shows how immune cells act to limit tumor development
Researchers have tried stretching, compressing or applying chemicals to samples of the extracellular matrix to measure this environment. But these methods also are prone to damaging the extracellular matrix.
Rahimi's team developed a nondestructive way to study how the extracellular matrix responds to disease, toxic substances or therapeutic drugs. The initial work for this study was performed in collaboration with the lab of Sophie Lelièvre, a professor of cancer pharmacology at Purdue, to identify how risk factors affect the extracellular matrix and increase the risk of developing breast cancer.
The device is a "lab-on-a-chip" connected to a transmitter and receiver. After pouring the extracellular matrix and the cells it contains onto the platform, the transmitter generates an ultrasonic wave that propagates through the material and then triggers the receiver. The output is an electrical signal indicating the stiffness of the extracellular matrix.
The researchers first demonstrated the device as a proof-of-concept with cancer cells contained in hydrogel, which is a material with a consistency similar to an extracellular matrix. The team now is studying the device's effectiveness on collagen extracellular matrices.
The device could easily be scaled up to run many samples at once, Rahimi said, such as in an array. This would allow researchers to look at several different aspects of a disease simultaneously. Source:
Purdue University Journal reference:
Zareei, A., et al. (2020) A lab-on-chip ultrasonic platform for real-time and nondestructive assessment of extracellular matrix stiffness. Lab on a Chip . doi.org/10.1039/C9LC00926D .