New technology distinguishes between two progressive neurodegenerative diseases

New technology distinguishes between two progressive neurodegenerative diseases

Researchers move closer to new screening technology for early detection of Parkinson's disease Soto's latest research in Nature shows that the aSyn-PMCA can successfully discriminate between PD and MSA with an overall sensitivity of 95.4%, which could allow doctors a look into the future to see which disease they need to address. The study also helps to understand the basis of these diseases at the molecular basis. "Our latest research shows that the aSyn aggregates of PD and MSA have different properties, so by amplifying the abnormal aggregates we can detect with high efficiency which disease the patient has," Soto said. "This has huge implications both for accurate diagnosis and clinical care of the patient, and the development of new specific treatments for both diseases." Since cerebrospinal fluid is collected through spinal taps, which are invasive and painful, the hope is that future research would enable optimization of the PMCA test to detect aSyn in blood or urine. "I envision a world without these diseases, but the only way to achieve that is to couple early diagnosis with good and safe treatment. That means we have to detect the abnormal proteins before they produce diseases and use safe treatment so no one ever develops the disease. Many diseases like smallpox, diphtheria, or polio have been eliminated by scientific advances – I hope the same will happen with devastating brain diseases, like Alzheimer's or Parkinson's," Soto said. The research was funded in part by grants from The Michael J. Fox Foundation for Parkinson's Research (MJFF) and the National Institute on Aging. "Objective diagnosis of Parkinson's and MSA – and differential diagnosis between the two – would be game-changing for the many patients and families searching for answers when issues arise and, potentially, would help develop, test, and prescribe early interventions to stop disease before symptoms begin," said Luis Oliveira, PhD, MJFF associate director of research programs. "Our foundation is proud to support this important research." The first author of the paper is Mohammad Shahnawaz, PhD, assistant professor in the Department of Neurology at McGovern Medical School. Other authors from McGovern Medical School include Abhisek Mukherjee, PhD; Sandra Pritzkow, PhD; Nicolas Mendez, and Prakruti Rabadia. Soto is an inventor on patented PMCA technology and is currently the co-founder, chief scientific officer, and a board director of Amprion Inc., a biotech company focusing on the commercial utilization of PMCA for early diagnosis of Parkinson's, Alzheimer's, and other neurodegenerative diseases. Soto and Shahnawaz are inventors in patented technology on the use of aSyn-PMCA for PD diagnosis. The U.S. Food and Drug Administration has granted a Breakthrough Devices designation to Amprion's proprietary technology PMCA for its potential to diagnose Parkinson's disease at a much earlier stage than current diagnostic methods. Source: University of Texas Health Science Center at Houston (UTHealth) Journal reference: Shahnawaz, M., et al. (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature . doi.org/10.1038/s41586-020-1984-7 .



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More