Princeton researchers uncover vital role played by a protein elevated in many cancers

Princeton researchers uncover vital role played by a protein elevated in many cancers

Researchers at Princeton University have successfully recreated a key process involved in cell division in a test tube, uncovering the vital role played by a protein that is elevated in over 25% of all cancers. The researchers' findings, described in a pair of papers published in the journals eLife and Nature Communications , are a key step toward recreating the entire cell division machinery and could lead to new therapies aimed at preventing the growth of cancer cells. When cells divide, a spindle-like structure composed of thousands of filaments called microtubules attaches to chromosomes and pulls equal numbers of them into each newly forming cell. Each microtubule is assembled from individual tubulin molecules and, because errors in chromosome segregation can lead to cancer, it is vital that they assemble into microtubules at the right time and place to form a functional spindle apparatus. Branching microtubule nucleation, in which a new microtubule forms from the side of an existing one, is crucial to this process because it allows the cell to form large numbers of microtubules that all point toward chromosomes, enabling their capture by the spindle. Branching microtubule nucleation depends on several pieces of molecular machinery. One piece, called the gamma-tubulin ring complex (γ-TuRC), initiates the assembly of tubulin molecules into microtubules, while another, known as the augmin complex, recruits γ-TuRC to the side of existing microtubules. A protein called TPX2, whose levels are elevated in over 25% of all cancers, is also involved in branching microtubule nucleation. Elevated TPX2 levels lead to both aberrant microtubule assembly in cells and poor outcomes in cancer patients. But how TPX2 works with augmin and γ-TuRC to mediate branching microtubule nucleation and spindle assembly has remained unknown. To better understand the mechanism of branching microtubule nucleation, we set out to reconstitute the process outside of the cell using purified proteins." Sabine Petry, assistant professor of molecular biology at Princeton In the eLife study, graduate students Raymundo Alfaro-Aco and Akanksha Thawani describe how they recreated branching microtubule nucleation in a test tube. One key finding from the study is that, like augmin, TPX2 can bind to microtubules and recruit γ-TuRC to initiate branching microtubule nucleation. Another surprising finding was that TPX2 also helps recruit augmin to microtubules, further enhancing the recruitment of γ-TuRC. Related Stories



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More