Researchers create new brain cancer model using genetically engineered pluripotent stem cells
The researchers are looking at ways to bioprint appropriate tissues directly into a subject to correct damage or defects. They will first investigate, in an immunodeficient rat model, bone tissue bioprinting. Next, they will investigate multilayered skin tissue which include adipose -- fat -- and dermis/epidermis -- skin -- tissue. They will look at the impact of differentiation factors and how fat influences the growth of skin tissue.
Finally, they will look at three-layer composite tissues that include bone, fat and skin layers to determine how vascularization occurs in both soft and hard tissue regeneration.
"We have formed a complementary collaboration that merges essential domain knowledge in bioprinting, regenerative medicine, craniomaxillofacial surgery, plastic surgery, gene therapy, gene delivery, bone mechanics and bone and skin biology with the depth necessary to propel this work," said Ozbolat.
To meet these needs, the team consists of co-investigators, Elias Rizk, associate professor of neurosurgery; Dino Ravnic, assistant professor of surgery, and Thomas Samson, associate professor of surgery, both in the Division of Plastic Surgery and Greg Lewis, assistant professor of orthopedics and rehabilitation, all in the College of Medicine; and Daniel Hayes, associate professor of biomedical engineering.
The goal of the project is to produce an advanced bioprinting technology that shows the complex interactions between layers of engineered tissues and provide an understanding of how localized delivery of differentiation factors will impact craniomaxillofacial reconstruction. Source: