Researchers take step toward automating thyroid cancer triage

Researchers take step toward automating thyroid cancer triage

According to an article published ahead-of-print in the April issue of the American Journal of Roentgenology ( AJR ), a Stanford University team has developed a quantitative framework able to sonographically differentiate between benign and malignant thyroid nodules at a level comparable to that of expert radiologists, which may prove useful for establishing a fully automated system of thyroid nodule triage. Alfiia Galimzianova et al. retrospectively collected ultrasound images of 92 biopsy-confirmed nodules, which were annotated by two expert radiologists using the American College of Radiology's Thyroid Imaging Reporting and Data System (TI-RADS). In the researchers' framework, nodule features of echogenicity, texture, edge sharpness, and margin curvature properties were analyzed in a regularized logistic regression model to predict nodule malignancy. Authenticating their method with leave-one-out cross-validation, the Stanford team used ROC AUC, sensitivity, and specificity to compare the framework's results with those obtained by six expert annotation-based classifiers. The AUC of the proposed framework measured 0.828 (95% CI, 0.715-0.942)—"greater than or comparable," Galimzianova noted, "to that of the expert classifiers"—whose AUC values ranged from 0.299 to 0.829 (p = 0.99). Additionally, in a curative strategy at sensitivity of 1, use of the framework could have avoided biopsy in 20 of 46 benign nodules—statistically significantly higher than three expert classifiers. In a conservative strategy at specificity of 1, the framework could have helped to identify 10 of 46 malignancies—statistically significantly higher than five expert classifiers. "Our results confirm the ultimate feasibility of computer-aided diagnostic systems for thyroid cancer risk estimation," concluded Galimzianova. "Such systems could provide second-opinion malignancy risk estimation to clinicians and ultimately help decrease the number of unnecessary biopsies and surgical procedures." Explore further More information: Alfiia Galimzianova et al, Quantitative Framework for Risk Stratification of Thyroid Nodules With Ultrasound: A Step Toward Automated Triage of Thyroid Cancer, American Journal of Roentgenology (2020). DOI: 10.2214/AJR.19.21350 Journal information: Provided by American Roentgen Ray Society Citation : Researchers take step toward automating thyroid cancer triage (2020, January 23) retrieved 24 January 2020 from https://medicalxpress.com/news/2020-01-automating-thyroid-cancer-triage.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More