Scientists shed new light on neuronal circuits that acquire and update voluntary actions

Scientists shed new light on neuronal circuits that acquire and update voluntary actions

Two types of neuronal circuit in the brain that acquire and update voluntary actions are much more intertwined than previously thought. Scientists at UNSW Sydney’s Decision Neuroscience Lab have made a major discovery about the way brains influence behavior which challenges theory that has stood for 30 years. And the findings could one day have key implications for the way we treat brain-related diseases such as Parkinson’s or deal with conditions like Tourette’s syndrome. In a paper published today in the prestigious journal Science, the research team of Dr. Miriam Matamales and Dr. Jay Bertran-Gonzalez, together with Neuroscience Lab Director, Scientia Professor Bernard Balleine, wanted to determine the relationship between the two main types of neuron found in the striatum, a major area of the brain responsible for voluntary movement in animals and humans. They set up experiments to observe mice while they learned new actions that led to a reward of food, then examined the activity of these neurons in large areas of the striatum. They looked specifically at the activity of the two classes of neuron in this area – those expressing D1 or D2 types of dopamine receptors. For the last three decades, these D1- and D2-neurons were thought to have an independent influence on voluntary action, respectively initiating and inhibiting reward-seeking behavior. While studying how these two types of neuron became active during learning, the team began to find an unexpectedly high degree of interaction between them which happened locally, within the striatum itself. Lightbulb moment For an example of behavior where these neurons would be active, Dr. Matamales suggests a simple, but common scenario of walking into a room and flicking on a light switch to find the light doesn’t work. So you walk into a room, flick the switch without even thinking about it, and there’s no light. You learn something has changed and so the behavioral response has to be modified by that learning. What we’re interested in is what changes in the brain are necessary to update that learning to realize ‘oh, the bulb’s blown, I should stop flicking the switch expecting the light to go on’. Although this may seem trivial at one level, this kind of plasticity in decision making processes is going on all the time. Updating learning to control our actions is a critical aspect of brain function acquired through evolution, to stop us wasting valuable energy by repeating a task for no reward.” Dr. Miriam Matamales, UNSW Sydney’s Decision Neuroscience Lab Professor Balleine explains that what is happening is that prior learning about behavior tied to one outcome is put on hold while an updated version relevant to the change in the environment is rewritten. “This regulation of voluntary action is not about getting rid of or replacing the knowledge or behavior, it’s about being more efficient in stopping actions that use energy for no reward,” he says. “You’ve got a neuron, the D1-neuron, that’s involved in acquiring and maintaining ongoing behavior and another, the D2-neuron, that’s engaged in updating that behavior when there are changes in the environment. And what is game changing is that this critical interaction is going on in the striatum, not further downstream in more distant motor output structures of the brain as was thought previously.” Rethinking brain health



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More