Study of Supercapacitive activity of Eu-MOF as an electrode material - New Journal of Chemistry (RSC Publishing)

May 13, 2019 0 Comments

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT). During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience. High surface area and redox activity are indispensable characteristics for a material to be considered as an electrode material in pseudocapacitors. In this regard, redox active metals-based metal-organic frameworks (MOFs) with high surface area, can function as supercapacitors. In this research study, a hydrothermal process was applied to synthesize Eu-based metal-organic framework (Eu-MOF) [Eu2(fma)2(ox)(H2O)4.4H2O] (fma = fumarate and ox = oxalate). The supercapacitive activity of Eu-MOF was investigated by instrumental analyses of cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) measurements in 6 M KOH as an electrolyte. The Eu-MOF exposed a specific capacitance of 468 F g-1 at a discharge current density of 1 A g-1, and 95.2% capacitance retention after 4000 cycles. To the best of our knowledge, this study is considered as the start point of using lanthanide-MOF as an electrode material for supercapacitors and the results obviously consent to outstanding properties of Eu-MOF for the mentioned application. The article wasreceived on 26 Feb 2019,accepted on 10 May 2019andfirst published on 11 May 2019 If you are not the author of this article and you wish to reproduce material from it in a third party non-RSC publication you mustformally request permission using Copyright Clearance Center. Go to ourInstructions for using Copyright Clearance Center page for details. Authors contributing to RSC publications (journal articles, books or book chapters) do not need to formally request permission to reproduce material contained in this article provided that the correct acknowledgement is given with the reproduced material. Reproduced material should be attributed as follows: For reproduction of material from NJC: Reproduced from Ref. XX with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry. For reproduction of material from PCCP: Reproduced from Ref. XX with permission from the PCCP Owner Societies. For reproduction of material from PPS: Reproduced from Ref. XX with permission from the European Society for Photobiology, the European Photochemistry Association, and The Royal Society of Chemistry. For reproduction of material from all other RSC journals and books: Reproduced from Ref. XX with permission from The Royal Society of Chemistry. If the material has been adapted instead of reproduced from the original RSC publication "Reproduced from" can be substituted with "Adapted from". In all cases the Ref. XX is the XXth reference in the list of references. If you are the author of this article you do not need to formally request permission to reproduce figures, diagrams etc. contained in this article in third party publications or in a thesis or dissertation provided that the correct acknowledgement is given with the reproduced material. Reproduced material should be attributed as follows: For reproduction of material from NJC: [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC For reproduction of material from PCCP: [Original citation] - Reproduced by permission of the PCCP Owner Societies For reproduction of material from PPS: [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC For reproduction of material from all other RSC journals: [Original citation] - Reproduced by permission of The Royal Society of Chemistry If you are the author of this article you still need to obtain permission to reproduce the whole article in a third party publication with the exception of reproduction of the whole article in a thesis or dissertation. Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.



Also in Industry News

Liquid error (line 285): internal
Hirschsprung's Disease Genetic Analysis Reveals Mix of Common, Rare Risk Variants

May 24, 2019 0 Comments

NEW YORK (GenomeWeb) – Genetic factors that contribute to a highly heritable developmental condition called Hirschsprung's disease include a complex suite of risk variants, ranging from common polymorphisms in non-coding elements to rarer coding variants and copy number variants (CNVs), according to new research from investigators at Johns Hopkins University, the University of Washington, the Broad Institute, and New York University. "In our study, we found that the risk of the complex phenotype...

Read More

Correction to: Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage
Correction to: Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage

May 24, 2019 0 Comments

In the publication of this article [1], there is an error in one of the contributing author names. The error: ‘Jalal Abdolali Zade’ Should instead read: ‘Jalal Abdolalizadeh’ Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, prov...

Read More

Protein Expression: basic concepts to new directions
Protein Expression: basic concepts to new directions

May 24, 2019 0 Comments

Date: Tuesday, 11 June, 2019 Time: 09:30  – 13:00 Place: Fèlix Serratosa,  Parc Cientific de Barcelona (PCB) This short workshop will describe many aspects of heterologous expression in E.coli, from choice of construct design through to methods to improve the levels of soluble expression and options for co-expression. In addition, it will also address expression in eukaryotic hosts, including secreted proteins and ECDs, and options for co-expression. The workshop will finish with a discussion an...

Read More