The Medical News

The Medical News

Synthetic mRNA nanoparticles restore tumor suppressor gene, make cancer cells susceptible to drugs "At a fundamental level, many diseases can be traced to a molecule not binding correctly," said Wesley Errington, a University of Minnesota biomedical engineering postdoctoral researcher and lead author of the study. "By understanding how we can manipulate these 'dials' that control molecular behavior, we have developed a new programming language that can be used to predict how molecules will bind." The need for a mathematical framework to decode this programming language is highlighted by the researchers' finding that, even when the interacting molecule chains have just three binding sites each, there are a total of 78 unique binding configurations, most of which cannot be experimentally observed. By dialing the parameters in this new mathematical model, researchers can quickly understand how these different binding configurations are affected, and tune them for a wide range of biological and medical applications. "We think we've hit on rules that are fundamental to all molecules, such as proteins, DNA, and medicines, and can be scaled up for more complex interactions," said Errington "It's really a molecular signature that we can use to study and to engineer molecular systems. The sky is the limit with this approach." In addition to Sarkar and Errington, the research team included Bence Bruncsics from the Budapest University of Technology and Economics who was a visiting masters' student in the Sarkar lab at the University of Minnesota. The team also partnered with the Institute for Therapeutics Discovery & Development (ITDD) in the University of Minnesota's College of Pharmacy for the lab experiments to test the computational model. The research was funded by the National Institutes of Health. Source: University of Minnesota College of Science and Engineering Journal reference: Errington, W.J., et al. (2019) Mechanisms of noncanonical binding dynamics in multivalent protein–protein interactions. The Proceedings of the National Academy of Sciences . doi.org/10.1073/pnas.1902909116 .



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More