VR helps cardiologist detect patient's injury and repair a broken heart

VR helps cardiologist detect patient's injury and repair a broken heart

One night last December, in Gig Harbor, Washington, a restaurant co-worker told Brevin Cronk that his lips had turned blue. He made haste for a nearby emergency room, which measured his blood-oxygen at 77%, well shy of the 90% level that doctors consider "low." "I was pretty afraid," Cronk says, recalling the long ambulance ride to UW Medical Center – Montlake. "In the back of my mind, it's always, 'Am I going to survive this?' My heart was failing." Cronk, 21, says he's lost count but guesses his heart procedures number 10 or 11, including six open heart surgeries. Such double-digit tallies aren't uncommon among people born with complex congenital heart deficits. The procedure he had two months ago, though, stands out from the rest. "My mind was blown," Cronk said, to learn that virtual reality was involved in his acute repair. "It was super cool that they were able to walk around my heart … and look up and identify the problem." Cronk's heart was working furiously, as if he were running a marathon, when he reached the hospital, said UW Medicine Heart Institute cardiologist Zach Steinberg. He is a specialist in congenital heart abnormalities. "A layer of reconstructed heart vessel had torn away, creating a partial blockage, obstructing blow flow from the right ventricle to the lungs. That, in turn, built up pressure inside his heart and opened a hole in the surgically created wall separating the left and right ventricles. He had blue (unoxygenated) blood mixing with red (oxygenated) blood." Cronk's circumstances made surgery a high-risk option. A catheter approach to reopen the blocked vessel and patch the hole was safer, but still profoundly complex. "His past surgeries have made it difficult to image him in the standard way. We performed a CT scan and cardiac catheterization right away, which revealed what had happened to [Cronk's] heart," Steinberg said. "Once we determined that a transcatheter repair offered the safest approach, I asked Dmitry to make a VR file." Dmitry Levin is a heart-focused research scientist who has immersed himself in 3D imaging and modeling. He helps cardiologists understand patients' unique anatomies and create individualized treatment plans. For the past 18 months, he's been learning a VR software program – what views can it offer, what datasets are useful for what procedures – and slowly road-testing its capabilities in patient cases. All the information in a VR image comes from the patient's CT scan. Making sense of that busy visual is akin to trying to read a map without a legend. The physician has to communicate what structures they need to see depicted in 3D, and what can be left out." Dmitry Levin, heart-focused research scientist Related Stories



Also in Industry News

How to decide whether or not to start treatment for prostate cancer?
How to decide whether or not to start treatment for prostate cancer?

0 Comments

How to decide whether or not to start treatment for prostate cancer?

Read More

Analysis of the SARS-CoV-2 proteome via visual tools
Analysis of the SARS-CoV-2 proteome via visual tools

0 Comments

Analysis of the SARS-CoV-2 proteome via visual tools

Read More

$65m investment increases British Patient Capital’s exposure to life sciences and health technology
$65m investment increases British Patient Capital’s exposure to life sciences and health technology

0 Comments

$65m investment increases British Patient Capital’s exposure to life sciences and health technology

Read More